LOW VOLTAGE AIR CIRCUIT BREAKERS

World
 oulorr E

04B

Mitsubishi Presents the WS Series, Satisfied with the High Demands of the 21 Century Global Market.

High-Reliability

Customer Friendly

 1011150011110110000110101010

Line up (630 to 6300A)

Rated current (A)	630	1000	1250	1600	2000		2500	3200	4000		5000	6300
SW series	AE630-SW	AE1000-SW	AE1250-SW	AE1600-SW	AE2000-SWA	AE2000-SW	AE2500-SW	AE3200-SW	AE4000-SWA	-	-	-
SS series	-	-	-	-		-	-	-	-	AE4000-SS	AE5000-SS	AE6300-SS
SH series	AE630-SH	AE1000-SH	AE1250-SH	AE1600-SH	AE200	O0-SH	AE2500-SH	AE3200-SH		-	-	-

Through Flexible and Various Options, to be built up the suitable Functions.

Electronic Trip Relay

Either a ground fault trip or alarm function can be selected by a setting switch. A control supply is not necessary. (Except 0.1 setting)

Secure protection by actual effective value detection For spread of electronic devices such as inverter, the actual effective value detection method that is strong against deformed waveform and each phase is independently adopted.

Network

Interface unit

CC-Link

PROFIBUS-DP

Modbus(RS-485)

Communication items

Measurement / alarm	Current, Voltage, Power, Harmonics, etc
	Tripping cause/current
	Alarm (PAL,TAL,Self diagnosis)
Breaker control	Breaker ON,OFF
	Spring charge
Breaker status	ON/OFF/spring charge status
	Drawout position
	ETR characteristics setting

I/0 unit

ON, OFF, Spring charge, Digital input
Option to interface unit
It is possible to turn ON/OFF the breaker and the spring charge via network. And by addition of the drawout position switch, it is possible to transmit the breaker drawout position.

Display unit for Panel board

It has the same function as the breaker display unit.
In the case where the breaker is attached in the panel, it is possible to confirm the measurement information via the panel board.

VT unit

It is possible to measure voltage, electric power and harmonics.

Electronic Trip Relay type code

WB1: INST/MCR only
for AE630-1600-SW / AE2000-3200-SW
WB2: INST/MCR only
for AE2000-SWA / AE4000-SWA

High-Performance High-Reliability

The safety of valuable circuits can be securely maintained.

Higher short circuit protection performance attained by improving breaking capacity

In case of 690V AC Icu = Ics, improved from 50 kA to 65 kA for AE630-SW~AE2000-SWA and from 50 kA to 75 kA for AE2000-SW~AE4000-SWA.

Higher safety attained by improving insulation performance
Rated impulse withstand voltage (Uimp) is improved to change the main circuit from 8 kV to 12 kV .

High operating durability makes high reliability.

\square Mechanical

The new models have been sharply improved in mechanical durability compared to the former model.
Formermo
Formermo

- New model

Wider choice coordination range attained by improving rated short-time withstand current

In case of Icw (1s), improved from 65 kA to 75 kA for AE2000-SW~AE4000-SWA.

Uimp (Rated impulse withstand voltage)

Electrical

The new models (V2*) have been sharply improved in electrical durability compared to the former model.

* V2:High durability models
- Former model - New model (V2)

Customer Friendiy

For convenience

3 sizes

Note 1) AE4000-SS ~ AE6300-SS and AE-SH series (high breaking models) remain to be supported by the present model.

Compact size AE2000-SWA!

New model
■ The compact AE2000-SWA can reduce the panel size.

The former model (AE-SS) can be retrofitted.
It is same as the former model (AE-SS) in installation dimension and outline dimension, and the former model can be replaced with the new one.

ACB main body and drawout frame can be replaced.
\square It can be installed to the existing connection bus bar without any special connection kit.
(Except AE2000-SWA, AE4000-SWA)

The drawout type terminal can be changed (vertical \leftrightarrow horizontal).

Note 1) This drawout frame is a special frame. The standard drawout frame cannot be used. Production is available for AE630-SW - AE1600 SW drawout types. Production is not available for AE2000-SW -AE3200-SW and AE2000-SWA, AE4000-SWA.

Note 2) AE2000-SWA and AE4000-SWA cannot change the vertical \leftrightarrow horizontal terminals. Vertical connection only is available.

Reverse connection available

Line and Load is not defined on the Main circuit terminals. Therefore reverse connection is available without any limitation.

External appearance and skeleton

Fixed type

AE-SW Series

AE1600-SW 3P
(1) Arc extinguishing chamber
(2) Control circuit terminal block
(3) Electronic trip relay
(4) OFF button
(5) ON button
(6) Padlock hook
(7) Charging indicator
(8) ON/OFF indicator
(9) Manual reset button(Optional)

In case of the fixed type,Lifting hooks (HP) are attached.

Drawout type

product structure

Skeleton

Product introduction

1	2	3	4	5
Type	Standard	Connection	Drawout type accessories	Electrical accessories
AE630-SW AE1000-SW AE1250-SW AE1600-SW AE2000-SWA AE2000-SW AE2500-SW AE3200-SW AE4000-SWA	IEC 60947-2 EN 60947-2(CE) VDE JIS C 8201-2 GB 14048.2(CCC) Shipping standards are available soon. LR GL BV DNV ABS NK	Drawout type Horizontal terminal Vertical terminal Front terminal Horizontal-Vertical changeable. Fixed type	Cell switch Short-circuit B-contact Lifting hooks Safety shutter Safety shutter lock Mis-insert preventor Test jumper	Auxiliary switch Motor charging device Closing coil Shunt trip device Under voltage trip device Condenser trip device
6	7	8	9	10
Mechanical accessories	Electronic trip relay	Relay accessories	Network	Special environment
Push button cover Counter Cylinder lock Terminal cover Door frame Dust cover Interphase barrier Mechanical interlock Door interlock	General use WS type Generator protection use WM type Special use WB type Optional G1:Ground fault protection E1:Earth leakage protection AP:2nd AdditionalPre-alarm N5:Neutral pole 50\% protection	Extension module Display Temperature alarm MCR switch Neutral CT External ZCT VT unit	CC-Link Interface unit PROFIBUS-DP Interface unit Modbus Interface unit I/O unit	Moisture-fungus treatment Corrosion resist

Product Specification

- Specification

Type					AE630-SW	AE1000-SW	AE1250-SW			
Frame size (A)					630	1000	1250			
Rated insulation voltage(Ui) (AC.V)				(AC.V)			1000			
Rated operational voltage(Ue)				(AC.V)			690			
Rated impulse withstand voltage(Uimp)				(kV)			12			
Pollution degree							3			
Number of poles							3, 4			
Rated current In					630	1000	1250			
Current setting $\operatorname{Ir}(\mathrm{A})\left(40^{\circ} \mathrm{C}\right)$		$\begin{gathered} \text { General use } \\ \binom{\text { Current rating adjustable }}{0.5 \text { to } 1.0 \text { Ir } 0.05 \text { step }} \end{gathered}$			$\begin{aligned} & 315-346.5-378-409.5-441- \\ & 472.5-504-567-598.5-630 \\ & \text { (Note 5) } \end{aligned}$	$\begin{gathered} 500-550-600-650-700-750- \\ 800-850-900-950-1000 \end{gathered}$	$\begin{gathered} 625-687.5-750-812.5-875- \\ 937.5-1000-1062.5-1125- \\ 1187.5-1250 \end{gathered}$			
		Generator protection use (Current rating fixed)			$150 \leq \operatorname{lr} \leq 630$	$400 \leq \operatorname{lr} \leq 1000$	$800 \leq \mathrm{Ir} \leq 1250$			
Rated current of neutral pole (A)					630	1000	1250			
IEC60947-2 EN60947-2 BV VDE JIS C 8201-2 GB14048.2	Ultimate breaking capacity Icu (kA rms)		690 V AC		65					
					65					
			240-5	V AC	65					
	with MCR		690 V AC		65					
			600 V AC		65					
			240-5	V AC	65					
	without Instantaneous		690 V AC		25 (Note1)					
			500 V AC		25 (Note1)					
	Rated service breaking capacity Ics (kA rms) \%lcu				100\%					
	Rated making capacity Icm (kA peak)		690 V AC		143					
			600 V AC		143					
			240-500V AC		143					
	with MCR		690 V AC		143					
			600 V AC		143					
			240-500V AC		143					
	without Instantaneous		690 V AC		52.5					
			500 V AC		52.5					
Rated short time withstand current Icw (kA rms)			1 s		65					
			2s		60					
			3s		50					
Maximum total breaking time (ms)					40 (Note 6)					
Maximum closing time (ms)					80					
Number of operating cycles		With rated current	AC500V In		5000					
		AC690V In	5000							
(Note 2)			Without rated current			25000 (Note 4)				
Connecting terminal		Horizontal terminal			\bigcirc					
		Vertical terminal			\bigcirc					
		Front terminal			\bigcirc					
Outline dimension (mm) $\mathrm{H} \times \mathrm{W} \times \mathrm{D}$		Fixed type		3-pole	$410 \times 340 \times 290$					
			4-pole	$410 \times 425 \times 290$						
		Drawout type		3 -pole	$430 \times 300 \times 368$					
		4-pole	$430 \times 385 \times 368$							
Weight (kg) (without Accessory)				Fixed type		3-pole	40	41		
		4-pole	50			51				
		Drawout type (including cradle)		3-pole	63					
		4-pole	77							
		Cradle only		3 -pole		26				
		4-pole		30						

(Note 1) The columns for "without instantaneous" are the values when the bare main body and the external relay is combined.
(Note 2) The number of operating cycles without rated current also include the number of operating cycles with rated current.
(Note 3) AE2000-SWA and AE4000-SWA apply for only vertical terminal of connecting terminal.
(Note 4) This value means number of operating cycles of ACB's body not including accessories.
(Note 5) Products with low rating types is available.

[^0]| | AE1600-SW | AE2000-SWA | AE2000-SW | AE2500-SW | AE3200-SW | AE4000-SWA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1600 | 2000 | 2000 | 2500 | 3200 | 4000 |
| | | | 1000 | | | |
| | | | 690 | | | |
| | | | 12 | | | |
| | | | 3 | | | |
| | | | 3, 4 | | | |
| | 1600 | 2000 | 2000 | 2500 | 3200 | 4000 |
| | $\begin{gathered} 800-880-960-1040-1120- \\ 1200-1280-1360-1440- \\ 1520-1600 \\ \hline \end{gathered}$ | 1000-1100-1200-1300-1400-1500-1600-1700-1800-1900-2000 | $\begin{array}{\|c\|} \hline 1000-1100-1200-1300- \\ 1400-1500-1600-1700- \\ 1800-1900-2000 \text { (Note } 5 \text {) } \\ \hline \end{array}$ | 1250-1375-1500-1625-1750-1875-2000-2125-2250-2375-2500 | 1600-1760-1920-2080-2240-2400-2560-2720-2880-3040-3200 | 2000-2200-2400-2600-2800-3000-3200-3400-3600-3800-4000 |
| | $1000 \leq 1 \mathrm{r} \leq 1600$ | $1250 \leq \mathrm{lr} \leq 2000$ | $800 \leq 1 r \leq 2000$ | $1600 \leq \mathrm{lr} \leq 2500$ | $2000 \leq \mathrm{lr} \leq 3200$ | $2500 \leq \mathrm{lr} \leq 4000$ |
| | 1600 | 2000 | 2000 | 2500 | 3200 | 4000 |
| | | | 75 | | | |
| | | | 75 | | | |
| | | | 85 | | | |
| | | | 75 | | | |
| | | | 75 | | | |
| | | | 75 | | | |
| | | | 45 (Note1) | | | |
| | | | 45 (Note1) | | | |
| | | | 100\% | | | |
| | | | 165 | | | |
| | | | 165 | | | |
| | | | 187 | | | |
| | | | 165 | | | |
| | | | 165 | | | |
| | | | 165 | | | |
| | | | 94.5 | | | |
| | | | 94.5 | | | |
| | | | 75 | | | |
| | | | 75 | | | |
| | | | 65 | | | |
| | | | 40 (Note 6) | | | |
| | | | 80 | | | |
| | | 1500 | 1500 | | 1000 | 500 |
| | | 1500 | 1500 | | 1000 | 500 |
| | | | 20000 (Note 4) | | | |
| | | - | \bigcirc | | | - |
| | | ((Note 3) | 0 | | | (Note 3) |
| | | - | \bigcirc | | | - |
| | | | $410 \times 475 \times 290$ | | | |
| | | | $410 \times 605 \times 290$ | | | |
| | | | $430 \times 435 \times 368$ | | | $430 \times 439 \times 368$ |
| | | | $430 \times 565 \times 368$ | | | $430 \times 569 \times 368$ |
| | 42 | 47 | 60 | 61 | 63 | 81 |
| | 52 | 57 | 72 | 73 | 75 | 99 |
| | 65 | 70 | 92 | 93 | 95 | 108 |
| | 79 | 84 | 113 | 114 | 116 | 136 |
| | | 31 | 35 | | 36 | 49 |
| | | 35 | 43 | | 44 | 61 |

(Remark) All models conform the isolating functiion according to IEC 60947-2.
Reverse connection is available

Connections

Over view

Connections Type	Horizontal (Standard)	Vertical (VT)	Front (FT)
Fixed type (FIX)		(AE2000/4000-SWA only)	-
Drawout type (DR)			
Connections Type	Vertical terminal adapter (VTA)	Front terminal adapter (FTA)	Horizontal-Vertical changeable (HVT)
Fixed type (FIX)	VTA		-
Drawout type (DR)			

Available connections

Breakers Connections		AE630-SW	AE1000-SW	AE1250-SW	AE1600-SW	AE2000-SWA	AE2000-SW	AE2500-SW	AE3200-SW	AE4000-SWA
Fixed type (FIX)	Horizontal	\bigcirc	\bigcirc	-	\bigcirc	-	\bigcirc	\bigcirc	-	-
	FIX-VT	-	-	-	-	\bigcirc	-	-	-	-
	VTA	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-
	FIX-FTA	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-
Drawout type (DR)	Horizontal	\bigcirc	-	-	\bigcirc	-	\bigcirc	-	\bigcirc	-
	DR-VT	\bigcirc								
	DR-FT	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-
	VTA	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-
	DR-FTA	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-
	DR-HVT	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-

Note : The dimensions of the terminal portion of DR-HVT are different from those of the standard part. As for details, refer to the external dimensional drawing.

Manual charging

The closing spring is charged by the manual charging handle. The breaker is closed when the ON button is pressed, and opened when the OFF button is pressed.

- When the closing spring is completely charged, the charging indicator will show "CHARGED".
- The indicator shows ON or OFF state of the main contacts.
- The breaker cannot be closed while the OFF button is being pressed. (Safety feature)
- OFF lock is available by padlock (See P7,P17) as standard.

Motor charging device (MD)

Option

The closing spring is charged by an electric motor. When the breaker is closed, the spring is charged automatically (ON-charge method.) The closing coil (CC) is required to remotely close, and the shunt trip device is required to remotely open the breaker.

- Manual charging operation is also possible.
- Pumping prevention is assured both electrically and mechanically.
- As the charging completion contact is separate from the electrical charging circuit, its function in the control scheme can be arranged as desired.

OFF charging method

A OFF charging method is also available. The closing spring is charged automatically when the breaker is opened. this is available only by externally connecting in series b contact (AXb) of the auxiliary switch to the (AXb) of the auxiliary s
motor charging circuit.
In case of DC power supply, please us high capacity auxiliary switch (HAX).

Polarity of DC circuit use

Rated voltage (V)	Applicable voltage range (V)	Applied voltage (V)	Inrush current(Peak value) (A)	Steady current (A)	Charging time (s)
DC24	18 ~ 26.4	24	22	6	≤ 5
DC48	$36 \sim 52.8$	48	14	3	
AC/DC	$85 \sim 137.5$	100	10(10)	3(4)	
100-125		125	12(12)	3(4)	
$\begin{gathered} \text { AC/DC } \\ 200-250 \end{gathered}$	170 ~ 275	200	5(7)	1(2)	
		250	6(8)	1(2)	

Contents in parentheses show the case of AE4000-SWA 4 pole. DC24 and 48 V products of AE4000-SWA 4 pole cannot be manufactured.

The closing coil is a device to close the breaker by remote control.

- An interlock to prevent pumping is provided electrically.

Rated voltage (Applicable voltage range)	Operating voltage - Operating inrush current (VA)			Closing time (Note1)
		AC	DC	
$\begin{aligned} & \text { DC24-48V } \\ & (18 \sim 52.8) \end{aligned}$		-	DC24V 3.0A (100W)	$0.08 \mathrm{~s}$or less
		-	DC48V 6.0A (200W)	
$\begin{aligned} & \text { AC } \cdot \mathrm{DC} \text { common } \\ & 100-250 \mathrm{~V} \\ & (75-275) \end{aligned}$	AC100V	0.7A (100VA)	DC100V 0.8A (100W)	
	AC250V	1.7A (200VA)	DC250V 1.8A (250W)	

Diode rectifier is not used for control source 24~48V DC.

Note 1) In case of double rating of rated voltage, it is the value to the lower rating.
Example) In case of DC24 to 48, it is operating time to DC24V.

- Closing time is from the initial energization of the closing coil to the completion of the closing of the main contacts.
- Do not use AXb contact for a cut-off switch,because pumping prevention is not perfomed.

Under voltage trip device (UVT)

This is the device that automatically trips the breaker when the circuit voltage drops below the nominal voltage, and comprises a UVT coil and UVT controller. There are 3 kinds of tripping time, INST, 0.5 s and 3.0 s .

Rated voltage	Frequency	operatingtime (time delay)	Pickup voltage	Drop-out voltage	Trip function	Power consumption
100-120V AC	50/60Hz	पInst(0.2s) $\square 0.5 \mathrm{~s}(\mathrm{~min})$ $\square 3.0 \mathrm{~s}$ (min)	65~85V	45~70V	With open circuit of DT1,DT2 terminals.	20VA
200-240V AC			130~170V	90~140V		
$380-460 \mathrm{~V} \mathrm{AC}$			247~323V	171~266V		
24 V DC	-		$15.6 \sim 20.4 \mathrm{~V}$	10.8~16.8V		
48 V DC			$31.2 \sim 40.8 \mathrm{~V}$	21.6~33.6V		
100-110V DC			65~85V	45~70V		
120-125V DC			78~102V	54~84V		

Note1) In case of $380-460 \mathrm{~V}$ AC,the external transformer is attached.
Note2) The operating time is a guarantee value when it drops from 85% or more of rated voltage
Note3) Time delay should be allowed for 1.5 s between applying the voltage to the UVT and closing the breaker
Note4) If a remote trip function is required,remove the shorting bar (DT1 DT2) and connect a normally closed switch, rated 0.5 A at 150VDC across them.

UVT circuit diagram (In case of AC380~460V

Shunt trip device (SHT)

The shunt trip device is a device to open the breaker by remote control. A cut-off switch is included.

4

Rated voltage (Applicable voltage range)	Operating voltage • Operating inrush current (VA)		Operating time (Note1)
	AC	DC	
$\begin{gathered} \text { DC24-48V } \\ (16.8 \sim 52.8) \end{gathered}$	-	DC24V 2.5A (100W)	0.04 s or less
	-	DC48V 6.0A (200W)	
AC • DC common 100-250V(70-275)	AC100V 0.4A (100VA)	DC100V 0.6A (100W)	
	AC250V 1.4A (150VA)	DC250V 1.6A (200W)	
$\begin{gathered} \text { AC380~500V } \\ (266 \sim 550) \end{gathered}$	AC380V 0.5A (250VA) AC500V 0.7A (300VA)	-	

Note1) In case of double rating of rated voltage, it is the value to the lower rating.
Example) In case of DC24 to 48 , it is operating time to DC24V.

Diode rectifier is not used for control source $24 \sim 48 \mathrm{~V}$ DC.

OCR alarm (AL)

5

Auxiliary switch
Standard (AX) High capacity type (HAX)
OCR alarm (AL) is a short-time operating switch (more than $30 \mathrm{~ms}(1 \mathrm{a})$) for the electrical indication of when the breaker trips due to over current.

Contact rating

	Voltage (V)		Resistive load	Inductive load
	AC	240	3	2
		125	5	3
	DC	240	0.2	0.2
		125	0.4	0.4
		30	4	3

Note1) • The control supply is not required for the operation of the OCR alarm (AL).
The self-hold circuit is required since the relay out put only operates for 0.03 seconds.
Note2) - When a continuous output signal is required, please use the output signal from the trip indicator (TI) which is operated by the same causes as the OCR alarm (AL)
In case of tripping the breaker in TC manual method, the manual reset button located right side of the electronic trip relay projects and the tripping indicative switch moves with continuous output.

This is the contact that is used to remotely indicate the ON or OFF status of the breaker

Type			Standard (AX)		High capacity type (HAX)	
			Resistive load	Inductive load	Resistive load	Inductive load
	AC	460 V	5	2	5	2.5
		250 V	10	10	10	10
		125 V	10	10	10	10
		250 V	0.3	0.3	3	1.5
	DC	125 V	0.6	0.6	10	6
		30 V	10	6	10	10
Maximum contacts			5a5b		5a5b	

Change-over sequence	Breaker state	a-contact (NO)	b-contact (NC)
	ON	ON	OFF
	OFF	OFF	ON

- The a and b conacts may turn simultaneously to ON instantaneously at the time of changing the contact; Pay attention to the contact state when designing circuits.
- The chattering time at the time of contact ON-OFF is below 0.025 s .
- For special environment specification, the contact capacity gets deteriorated. Apply for further detail.

Accessories (for breaker unit)

This enhances the interphase insulation between the terminal portions of the breaker, and prevents short-circuit due to conductive inclusion or dust. It can be attached and detached easily. As for its availability, refer to the below table.

Type	Connections	$\begin{array}{\|l} \hline \text { AE630-SW~ } \\ \text { AE1600-SW } \end{array}$	AE2000-SWA	$\begin{aligned} & \text { AE2000-SW~ } \\ & \text { AE3200-SW } \end{aligned}$	AE4000-SWA	Available for the
Fixed type (FIX)	Horizontal (FIX)	\bullet		-		
	Vertical terminal (FIX-VT)		\triangle		\triangle	- Available for separating terminals
	Vertical terminal adaptor (VTA)	-		-		
	Front terminal adaptor (FIX-FTA)	-		-		
Drawout type (DR)	Horizontal (DR)	\bullet		\bullet		Not existing type
	Vertical terminal (DR-VT)	\bullet	-	-	-	
	Front terminal (DR-FT)	-		-		
	Vertical terminal adaptor (VTA)	\triangle		Δ		
	Front terminal adaptor (DR-FTA)	-		-		
	Horizontal - Verrical changeable terminal (DR-HVT)	\bullet				

IP20-Terminal Cover(IP-TC)

This is a transparent cover to be attached to the terminal block of control circuit, and to prevent the charging portion from being exposed. The protection degree is IP20.

Mechanical interlock (MI)

This is the device to prevent parallel charge of 2 or 3 units of breakers, and it can interlock the breakers mechacally without fail.
All combinations are available among any models from AE630-SW to AE4000-SWA.
Further the interlock is possible among the different connection types or poles, such as Fixed type or Drawout type, 3 pole or 4 pole.
In combination with electric interlock, the higher safety interlock system can be secured

- In case of drawout type,the interlock works at "CONNECTED" position, and in another position the interlock is released, which is convenient for and easy maintenance and inspection of the breaker.
- When to turn OFF one breaker and then turn ON another breakers, please take an interval 0.5 seconds or more
- MI for 3 breakers can not be installed to combine with Door Interlock (DI).

Condenser trip device (COT)

Even if the power supply fails, the breaker can be electrically opened by remote operation
 within a definite time. This device is used in combination with the shunt trip device (SHT).

Type	KF-100C	KF-200C	
Rated input voltage (V)	AC100/110	AC200/220	
Rated frequency (Hz)	$50-60$		
Rated charging voltage (V)	Note1	$140 / 155$	
Condenser capacity ($\mu \mathrm{F}$)	820		
Voltage range	$60 \sim 125 \%$		
Power supply capacity (VA)	$1 \mathrm{VA} \max$		
Charging time (s)	Note2	$0.5 \mathrm{~s} \max$	
Trip limit time	Note3	30 seconds min.	
Paint color 30 seconds min.			
Withstand voltage (1minute)	Black (N1.5)		
Applicable shunt trip voltage	AC 2000V		

Note 1: The rated charging voltage is the voltage stored during condenser saturation. It is continuously supplied by the rectified voltage of the rated AC input voltage.
Note 2: The charging time starts from when the capacitor begins to supply power at 85% of the rated AC input voltage, and continues until the capacitor charging voltage reaches 60% of rating.

Note 3: The trip limit time means the time period in which the shunt trip device (SHT) can make a tripping operation once, even after the charged condenser with 100% supply voltage would be stopped to charge

Accessories(for drawout type)

Drawout interlock (standard)

This is the safety device that prevents insertion and drawout operation. When the breaker is ON , the drawout handle cannot be inserted, and insertion and drawout operation cannot be done unless the OFF button is pressed.

Position lock (standard)

This is the device that locks automatically the drawout mechanism at "TEST" or "CONNECTED" positions during insertion and drawout operation. When the lock plate is pushed in, lock is released and operation can be continued.

Outline dimensions (reference)

Padlock

A padlock can be arranged at the lock plate. Thereby, it is possible to prevent the connection position from being changed unnecessarily. A padlock of $\phi 5$ should be prepared by customer. As for outline dimensions of the padlock, please refer to the left figure.

Operating position of drawout type

The earthing points are located on both sides of the cradle.

Cell switch (CL)

This is the switch to show the drawout position (CONNECTED, TEST, and DISCONNECTED) of the breaker. An arbitrary combination up to 4 pieces is available.

Note 1: The setting is available for change by customer later A preliminary setting of CL at factory shipment is as follows. CL1:1C CL2:1C1D CL3:1C1T1D CL4:2C1T1D

Contact rating

Standard pattern

	CL-C	CL-T	CL-D
CL1	1	-	-
CL2	1	-	1
CL3	1	1	1
CL4	2	1	1

Short-circuit B-contact (SBC)

Option

This is the switch that shortcircuits the circuit of the auxiliary switch (AXb) when the drawout type breaker is drawn out from the connection position, and keeps the panel sequence with connected status. It can be arranged for all the auxiliary switch b contact points (AXb).

Lifting hook(HP)

Option

This is the metal fitting to suspend the main body when the breaker is removed from the drawout cradle. The fixed type breaker is equipped with Hp as standard.

Safety shutter(SST)

Option

The safety shutters cover the conductors (cradle side) and prevent contact with them when the breaker is drawn out.

Safety shutter lock(SST-lock)

Option

This kit is used to lock the safety shutters using 2 padlocks (the padlocks to be customer's supply). The safety shutters close when the breakers drawn out to prevent accidental contact with the main contacts.

Mis-insertion preventer(MIP)

This prevents other breakers than specified from inserting into the breaker, and Max 5 settings are available.

Test jumper(TJ)

Option

With the breaker taken out of its cradle, this device enable the breaker to be electrically opened and closed, and the operating sequence to be checked. 3m length one is equipped as standard shipment.

Electronic trip relay(Feature)

2 Optional setting module (option)
Additional function and characteristic can be selected by these optional setting module.

A Display (option)
Several measuring data (current, voltage, power etc) and alarms can be displayed with this module.
B Extension module (option)
This module is required when installed VT unit, display module and each interface unit.
C Load current LED
This indicator displays the maximum current of phase.
(D) RUN LED, ERR. LED

This indicator displays the ETR situation (Run or Error)
E Trip indicator LED
This indicator displays the trip cause.
(F) Pre-alarm(PAL)

This indicator displays the Pre-Alarm situation when exceed the setting current. When it installed power supply module with contact, the output contact of Pre Alarm is available.
G RESET button
When push this reset button, trip indicator, and Pre-Alarm will be reseted. And when the instantaneous test by MITSUBISHI special tester and push this reset button, as a result of LTD and STD function become ineffective.

H TEST terminal

This terminal already installed standard. This terminal is used several test by MITSUBISHI special tester.

OCR alarm (AL)

When it happen to trip by over current, ground fault (GFR) and Earth leakage (ER), it issue a warning alarm.

Neutral pole overcurrent protection (NP)

When harmonics in load current are large, the current on neutral pole exceeding rated current may flow. Harmonics may cause some troubles. Neutral pole overcurrent protection prevents them by operating at 100% of rated current on neutral pole.

MCR:Making current release (option)

Just under the breaker closing operation (from open to close), In characteristic become effective, but after closing the breaker,instantaneous characteristic become ineffective.
When you order the MCR switch, MCR switch is built in the main body.
If MCR switch is built in the main body and the adjust dial of Inst./MCR on main setting module is set the MCR position,MCR function become effective.

TAL (option)

When the temperature of main contact exceed normal temperature level, temperature alarm is indicated at LED (on main setting module) and output by contact (only installed power supply with output contact).
If TAL is installed in the breaker according your order, Temperature alarm (LED) on main setting module become effective. When the temperature of main contact goes down within normal tempter level, the temperature alarm (LED and output) is reset.

NCT (option)

Neutral CT is required for Ground fault or Neutral pole protection, when 3 pole breaker is used for 3 phase 4 wires system.

ZCT (option)

This device is necessary when installed earth leakage additional module (ER), for the purpose of effective the earth leakage protect function.

Characteristic table

	NA Nothing	G1 Ground fault	E1 Earth leakage	AP 2nd additional Pre-alarm	N5 Neutral pole 50\% protection
WS General use LTD+STD+ INST/MCR			$t_{+}^{+t_{4}}$		
WM Generator protection use LTD+STD + INST/MCR			$\begin{gathered} 4 \\ +t_{t} \\ +t_{4} \end{gathered}$		
WB Special use INST/MCR		$\begin{aligned} & \tau_{+} \\ & + \\ & + \end{aligned}$	$\begin{gathered} \tau_{*} \\ + \\ t_{ \pm} \end{gathered}$	$\stackrel{\pi}{1}:+$	

Power supply module

Type	Rating	alarm output
P1	$100-240 \mathrm{~V} \mathrm{AC} \cdot D C$	Nothing
P2	$24-60 \mathrm{~V}$ DC	Nothing
P3	$100-240 \mathrm{~V} \mathrm{AC}$ $100-125 \mathrm{~V} \mathrm{DC}$	6 output contacts
P4	$24-60 \mathrm{~V}$ DC	6 output contacts
P5	$100-240 \mathrm{~V}$ DC	6 output contacts by semiconductor

	Voltage(V)		Resistive load		Inductive load
			$\cos \phi=1.0$		$\cos \phi=0.4$ $\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}$
	AC	240	1A		0.5A
		120	1A		1A
	DC	125	0.1 A		0.05A
		30	1A		1A
	Contact capacity(Type code P5)				
	Voltage(V)		Normal current	Peak overload current	On resistance (max.)
out control power source.	AC	240	0.1A	0.3A	5Ω
		120	0.1A	0.3 A	5Ω
E1,AP),	DC	245	0.1A	0.3A	5Ω
		30	0.1A	0.3A	5Ω

Note1: Over current protection and ground fault protection operates without control power source.
Note2: Factory setting of 6 output contacts is as follows.
(1)LTD,(2)STD/INST,(3)Optional setting module function(G1,E1,AP),
(4)PAL,(5)TAL, (6)Error(Self diagnosis)

Contact capacity(Type code P5)

Low specifications products
AE630-SW and AE2000-SW has low rating type. Please refer to the "ORDERING INFORMATION SHEET."(Page 57-59)

Note1: Low rating type of AE630-SW does not available for the ground fault protection.
Note2: As for details of ratings, refer to page 9 and page 10.

Electronic trip relay(ETR) type code

Electronic trip relay (for general use : WS)

Trip indicator LED
B Pre-alarm LED
C Temperature alarm LED
D Load current LED
RUN LED
ERR. LED
Current setting dial
Uninterrupted current setting dial
LTD time setting dial
J STD pick up setting dial
STD time setting dial
INST/MCR pick up current setting dialOptional setting module (Refer P27~29)
N Pre-alarm current setting dial
RESET button (TEST L/S LOCK button)
P TEST terminal

Adjustable setting range

No.	Setting item	Mark	Adjustable setting range		Accuracy	setting for shipment
			AE630-SW~AE1600-SW AE2000-SW~AE3200-SW	AE2000-SWA AE4000-SWA		
G	Current setting	Ir	$0.5 \sim 1.0$ (0.05step) x In (CT Rating)		-	1.0
H	Uninterrupted current	Iu	$0.8 \sim 1.0 \times \operatorname{lr}$ (0.02step), Pick-up current : $1.15 \times \mathrm{lu}$		$1.05 \times$ lu \cdots Non Pick-up $1.25 \times$ lu \cdots Pick-up	-
I	LTD time	TL	12-25-50-100-150s at lu $\times 2$		$\pm 20 \%$	150
J	STD pick-up current	Isd	$1.5-2-2.5-3-4-5-6-7-8-9-10 \times \mathrm{lr}$		$\pm 15 \%$	10
K	STD time	Tsd	$\frac{0.5-0.4-0.3-0.2-0.1-0.06}{\left(1^{2}+\mathrm{ON}\right)} \frac{0.06-0.1-0.2-0.3-0.4-0.5 \mathrm{~s}}{\left(1^{2} \mathrm{OFF}\right)}$		$\begin{gathered} \pm 20 \% \\ 0.06 \cdots 0.04-0.08 \mathrm{~s} \end{gathered}$	0.5 (12 t ON)
L	INST./MCR pick-up current	li	$\frac{16-12-10-8-6-4-2-2-4-6-8-10-12-16}{(\text { MCR })} \times \text { Ir }$	$\frac{12-10-8-6-4-2-2-4-6-8-10-12}{\text { (INST) }} \times \text { Ir }$	$\pm 15 \%$	WS1 $\cdots 16$ (INST) WS2 $\cdots 12$ (INST)
N	Pre-alarm current	Ip	lu x 0.68 ~ 1.0 (0.04step) -OVER		$\pm 10 \%$	OVER
-	Pre-alarm time	Tp	1/2 TL (after 1/2 TL, PAL OUT turns on.)		$\pm 20 \%$	-

[^1]■Operating characteristic curve (for general use : WS)

Electronic trip relay(for generator protection use:WM)

A Trip indicator LED
B Pre-alarm LED
C Temperature alarm LED
D Load current LED
E RUN LED
F ERR. LED
G LTD pick-up current
H LTD time setting dial
I STD pick-up setting dial
J STD time setting dial
K INST./MCR pick-up current setting dial
L. Optional setting module (Refer P27~29)

M Pre-alarm current setting dial
N RESET button (TEST L/S LOCK button)

- TEST terminal

Adjustable setting range

No.	Setting item	Mark	Adjustable setting range		Accuracy	setting for shipment
			AE630-SW~AE1600-SW AE2000-SW~AE3200-SW	AE2000-SWA AE4000-SWA		
-	Current setting	Ir	0.63 ~ $1.0 \times \ln$ (Adjust by factory)		-	Comply with ordering sheet
G	LTD pick-up current	IL	1.0-1.05-1.1-1.15-1.2		$\pm 5 \%$	1.15
H	LTD time	TL	15-20-25-30-40-60s at IL $\times 1.2$		$\pm 20 \%$	20
1	STD pick-up current	Isd	$1.5-2-2.5-3-3.5-4-4.5-5 \times \mathrm{lr}$		$\pm 15 \%$	5
J	STD time	Tsd	$\frac{0.5-0.4-0.3-0.2-0.1-0.06}{\left(1^{2}+\mathrm{ON}\right)}-0.06-0.1$	$\frac{-0.2-0.3-0.4-0.5 \mathrm{~s}}{\left({ }^{2} \mathrm{t}\right. \text { OFF) }}$	$\begin{gathered} \pm 20 \% \\ 0.06 \cdots 0.04-0.08 \mathrm{~s} \end{gathered}$	0.5 (12t ON)
K	INST./MCR pick-up current	li	$\frac{16-12-10-8-6-4-2-2-4-6-8-10-12-16}{(\text { INST })} \times \text { lr }$	$\frac{12-10-8-6-4-2-2-4-6-8-10-12}{(\text { INST })} \times \text { Ir }$	$\pm 15 \%$	WM1 $\cdots 16$ (INST) WM2 $\cdots 12$ (INST)
M	Pre-alarm current	Ip	IL x $0.68 \sim 1.0$ (0.04step) -OVER		$\pm 5 \%$	OVER
-	Pre-alarm time	Tp	1/2 TL (after 1/2 TL, PAL OUT turns	on.)	$\pm 20 \%$	-

[^2]Pre-alarm current "OVER" setting is equal to 1.0.

■Operating characteristic curve (for generator protection use : WM)

Electronic trip relay(for special use : WB)

A Trip indicator LED
B Pre-alarm LED
C Temperature alarm LED
D Load current LED
E RUN LED
F ERR. LEDCurrent setting dial
H INST./MCR pick-up current setting dial
I Pre-alarm current setting dialRESET buttonTEST terminal

Adjustable setting range

Upper figure and table denote that are include optional MCR function.

■Operating characteristic curve (for special use : WB)

Electronic trip relay

Accessories

Ground fault protection(GFR)

Option
The ground fault protection (GFR) of several hundred amperes is possible. This function can be selected for trip and alarm (no trip). Power supply is necessary for this function, even if there is no
 power supply, it can function at $0.2 \times 1 n$ or higher.

Setting item	Mark	Adjustable setting range	Accuracy	Setting for shipment
GFR pick-up current	Ig	$0.1-0.2-0.3-0.4-0.5-0.6-0.7-0.8-0.9-1.0 \times \ln$	$\pm 20 \%$	1.0
GFR time	Tg	$\frac{3-1.5-0.8-0.5-0.3-0.15-<0.1-\frac{-0.1-0.15-0.3-0.5-0.8-1.5-3 \mathrm{~s}}{\text { TRIP }}}{}$ALARM $($ at $1.5 \times \mathrm{Ig})$	$\pm 20 \%$	3 (TRIP)

Neutral CT(NCT) *Only use for AE-sw

Option

The Neutral CT is used for ground fault protection when the 3 pole breaker is used on a 3 phase 4 wires system and for over current protection on N phase. Please use this CT in combination with ground fault protection (GFR). As for outline dimensions, refer to page 48.

GFR function block diagram (In case of 4pole breaker)

Block diagram with NCT function

NCT type name

ACB type name / CT rating		Applicable NCT type name
AE630-SW 630A	NCT06	
AE1000-SW 1000A	NCT10	
AE1250-SW 1250A	AE2000-SW 1250A	NCT12
AE1600-SW 1600A	AE2000-SW 1600A	NCT16
AE2000-SWA 2000A	AE2000-SW 2000A	NCT20
	AE2500-SW 2500A	NCT25
	AE3200-SW 3200A	NCT32
	AE4000-SWA 4000A	NCT40

[^3]
\% of rated current In

Earth leakage protection(ER)

By combining the ETR with earth leakage protection (ER) and External ZCT, earth leakage protection is possible. Earth leakage protection, earth leakage tripping and earth leakage alarm can be selected. Control supply is necessary for this function.

Setting item	Mark	Adjustable setting range	Accuracy	Setting for shipment
ER pick-up current	$I \Delta n$	$1 \mathrm{~A}-2 \mathrm{~A}-3 \mathrm{~A}-5 \mathrm{~A}-10 \mathrm{~A}$	$+0 \%$ -30%	10 A
ER time	Te	$\frac{3-1.5-0.8-0.5-0.3-0.15-<0.1-\frac{<0.1-0.15-0.3-0.5-0.8-1.5-3 \mathrm{~s}}{\text { TRIP }}}{\text { ALARM }}$(at $1.5 \times 1 \Delta \mathrm{n})$	$\pm 20 \%$	3 (TRIP)

External ZCT

This option is used to detect several amperes of earth leakage when use in combination with a electronic trip relay that has the earth leakage tripping (ER) option.
Two methods are available. The first is where the all load conductors pass through the ZCT.
The other method uses a smaller ZCT through which the supply transformer's ground wire passes through to earth.

ZCT type name	ACB type name
ZCT163	AE630-SW ~ AE1600-SW 3-pole
ZCT323	AE630-SW ~ AE1600-SW 4-pole AE2000-SW ~ AE3200-SW 3-pole
ZCT324	AE2000-SW ~ AE3200-SW 4-pole

ZCT for transformer ground wire

ZT15B	ZT30B	ZT40B	ZT60B	ZT80B	ZT100B

ER function block diagram (for load circuit method)

ER function block diagram (transformer ground wire method)

Electronic trip relay

Accessories

2nd Additional Pre-alarm (AP)

The Pre-Alarm (1st) function already installed in standard breaker, the 2nd Additional Pre-Alarm function can be installed by option, thereby it is possible to monitor (observer) electric circuit in more detail by 2nd Additional Pre-Alarm function.

2nd Additional Pre-alarm pick-up current Ip2	0.5-0.6-0.7-0.8-0.84-0.88-0.92-0.96-1.0 x lu
2nd Additional Pre-alarm time Tp2	$\begin{aligned} & 0.3-0.4-0.5-0.6-0.7-0.8-0.9 \times \text { TL } \\ & / 5-10-15-20-30-40-60 \mathrm{~s}(\mathrm{FLAT}) \end{aligned}$

Neutral pole 50\% protection(N5)

Option

Neutral pole overcurrent protection (operating at 100% of rated current) already installed in standard ETR.

But if you would like to operates at 50% of rated current on neutral pole, neutral pole 50% protection realizes it.

MCR Switch (MCR-SW)

If MCR switch is built in the breaker according to your order and the adjust dial of INST./MCR on Main setting module is setting the MCR position, MCR function become effective.

MCR function:
Just under the breaker closing operation (from open to close), Instaneouse characteristics become effective.
But after closing the breaker, Instaneouse characteristics become ineffective.

Temperature alarm (TAL)

Option

When the temperature of main contact exceeds normal level, Temperature alarm is indicated by LED (on main setting module) and output by contact (only installed power supply with output contact).
It is possible to know how situation of contact ware so that it can estimate the maintenance and replacement timing.
When you order TAL, TAL sensor is installed to near contact point of main contact.
If TAL is installed in the breaker according to your order, Temperature alarm (LED) on main setting module become effective.
When the temperature of main contact goes down within normal, temperature alarm turns off.

Field Test device (Y-2000)

The field test device (Y-2000) can be checked the Electronic Trip Relay function at test position and disconnected position.

The breaker will open, when you proceeding to tripping test by Y-2000.

Y-2000 specification

TEST ITEM	LTD,STD,INST,GFR,PAL
TEST SIGNAL RANGE	$10 \% \sim 2500 \%$
OUTLINE DIMENSION	$230(\mathrm{~W}) \times 120(\mathrm{H}) \times 290(\mathrm{D})$
TIMER	$0.000 \sim 999.999 \mathrm{~s}$
POWER SUPPLY	$100-240 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$

Electronic trip relay

Additional functions

By adding the extension unit in ETR, measuring, display and communication are possible.

List of extension unit

Name	Type	
Extension module	EX1	Module for display and interface function (indispensable)
Display module (relay attachment)	DP1	Display module for ETR
Display module (panel attachment)	DP2	Display module for panel board
VT unit	VT	VT for measuring of voltage, active power and active energy
CC-Link interface unit	BIF-CC	Interface unit for CC-Link
PROFIBUS-DP interface unit	BIF-PR	Interface unit for PROFIBUS-DP
Modbus (RS-485) interface unit	BIF-MD	Interface unit for Modbus (RS-485)
I/O unit	BIF-CON	For breaker remote control (interface unit required)
Drawout position switch	BIF-CL	This switch detects the drawout position of the breaker for interface.

Electronic trip relay(ETR) type code

Extension module (EX1)

This is the module that realizes various additional functions combining the display module (DP1 /
 DP2), the interface unit (BIF-CC / BIF-PR / BIF-MD) and the VT unit (VT).

1 Various measuring elements, high measuring accuracy
By loading the special ASIC, wealth measuring elements of load current, voltage, active power, current harmonics and high measuring accuracy have been realized
By adopting high-performance ASIC, various measuring elememts (load current, voltage, energy, harmonics, etc.) and high measuring accuracy are realized. As for details, refer to page 34.

2 Communication function
2 display modules and 1 interface unit can be connected simultaneously by interna communication.

Display module (DP1/DP2)

This is the module that displays and sets various information, for example, measurement information, trip and alarm information, setting of output contacts and so on.

1 Multi display of measuring element
It enables to easily monitor the comparison of each measuring element by multi display (load current 4 phases multi display and voltage multi display) on one screen.

2 2-colors back light

If trip or alarm occured, back light color changes from green to red instantly.

3 Graphical display

By adopting dot matrix type LCD, graphical display such as bar graph display of load current, current harmonics and characteristic curve are realized.

There are 2 types of this module. One is the ETR attachment type (DPI). Another is the panel attachment type (DP2) and is connected to extension terminals of control circuit by 2 m cable. (As for outline dimensions, refer to page 49.)

Note;

- Extension module (EX1) is required.

VT unit (VT)

It is possible to measure voltage, power, energy, current harmonics, etc. Combining the extension
 module (EX1). (for outline dimensions, refer to page 50.)

Electronic trip relay

Network

Interface unit (BIF-CC/BIF-PR/BIF-MD)

These Interface units can expand the future possibility in various communication and Intelligent control.

CC-Link

1 Applicable to various open networks.
These units are applicable to various open network systems such as CC-Link, PROFIBUS-
DP and Modbus (RS-485), which can be built in easily.

2 Intelligent control by Multi-data communication
It comes into being the Intelligent control by Multi-data communication through these interface units to PLC/SCADA, which transfer the measurement Information, setting values, error information and trip and alarm informations.

PROFIBUS-DP

Modbus(RS-485)
Note:

- Extension module (EX1) is required.

Note: Some device types are excluded.

- Extesion module (EX1) is requr

I/O unit(BIF-CON/BIF-CL)

The Input \& Output Controlling Unit (BIF-CON) is available for the remote controlling and remote monitoring of the breaker condition through the various network systems.
With this BIF-CON unit in addition to the Interface Unit, it become possible to control the breaker
 remotely, like a ON or OFF operations or Spring-charging.
Further, by combining the Drawout position switch (BIF-CL), the monitoring of drawout position become available in case of the breaker drawout type.

Function	Description	Note		
Control	Breaker ON operation	1a contact for CC.		
	Breaker OFF operation	1a contact for SHT. (not applicable for AC380~500V rating)		
	Spring charge	Digital Input (DI) monitoring		1a contact for MD.
:---				
	Breaker drawout position	In case of BIF-CC and BIF-MD, Max.3 contacts		
:---				
monitoring are available.				
In case of BIF-PR, 1 contact monitoring is available.		Position : CONNECTED, TEST and DISCONNECTED		
:---				
BIF-CL is required.				

O : can be displayed by DP1/DP2 : can be displayed																								
Combination sample																								
Type		(1)		(2)			(3)				$\begin{aligned} & \text { Note } \\ & \text { DP2) } \end{aligned}$			(1)		(2)	-		(3)		1;DP1		No	
(1)	WS				WM				WB				WS				WM				WB			
(2)	NP	AP	G1	E1																				
(3)	P1~P5												P1~P5											
Measurement																								
Load current ($\pm 2.5 \%$)	\bigcirc												\bigcirc											
Leakage current ($\pm 2.5 \%)^{\text {Note 4) }}$	-	-	-	\bigcirc																				
Voltage ($\pm 2.5 \%$)	-												\bigcirc											
power (active,reactive,apparent) ($\pm 2.5 \%$)	-												\bigcirc											
Power factor ($\pm 5 \%$)	-												\bigcirc											
Energy (active,reactive) ($\pm 2.5 \%$)	-												\bigcirc											
Harmonics current ($\pm 2.5 \%$)	-												(3.5...19th)											
Frequency ($\pm 1.0 \%$)	-												\bigcirc											
Trip history																								
LTD	\bigcirc				\bigcirc				-				\bigcirc				\bigcirc				-			
STD	\bigcirc				\bigcirc				-				\bigcirc				\bigcirc				-			
INST	\bigcirc												\bigcirc											
GFR	-	-	\bigcirc	-																				
ER	-	-	-	\bigcirc																				
UVT	O Note 2)												Note 2)											
Alarm history																								
PAL1	\bigcirc												\bigcirc											
PAL2	-	\bigcirc	-	-																				
OVER	\bigcirc												\bigcirc											
GFR	-	-	\bigcirc	-																				
EPAL	-	-	-	\bigcirc																				
ER	-	-	-	\bigcirc																				
TAL	\bigcirc Note 3)												Note 3)											
Characteristic setting (panel attachment product [DP2] only)																								
LTD	\bigcirc				\bigcirc				-				\bigcirc				\bigcirc				-			
STD	\bigcirc				\bigcirc				-				\bigcirc				\bigcirc				-			
INST	\bigcirc												\bigcirc											
PAL1	\bigcirc												\bigcirc											
PAL2	-	\bigcirc	-	-																				
GFR	-	-	\bigcirc	-																				
EPAL	-	-	-	\bigcirc																				
ER	-	-	-	\bigcirc																				
Setting																								
Output contacts	\bigcirc												\bigcirc											
Date \& Time	\bigcirc												-											
Demand time	\bigcirc												\bigcirc											
Alarm holding method	-												\bigcirc											
Reset																								
Trip and alarm information	\bigcirc												-											
Measurement information (minimum and maximum values)	-												-											
ETR information																								
Main / Optional setting module information	\bigcirc												\bigcirc											
Error information	\bigcirc												\bigcirc											
CT rating	\bigcirc												\bigcirc											
Phase line method	\bigcirc												\bigcirc											
Normal connection or reverse connection	\bigcirc												\bigcirc											

[^4]
Electronic trip relay

Electronic trip relay circuit diagram

(1) Power supply CT

Energy is supplied for the operation of the overcurrent tripping and ground fault tripping(GFR) function of the electronic trip relay.
(2) Current sensor coil

This detects current of each phase flowing through breaker. A coreless coil which has good linearity is a chieved.
(3) Power supply circuit

This generates action energy of ETR, by energy from power supply CT.
(4) ASIC

This amplifies signal detected by the current sensor coil, and detects ground fault current by vector composition.

(5) Micro processor

This carries out tripping operation by signal amplified or detected by the exclusive ETR.

(6) Characteristic setting module

This is the circuit for setting the characteristic of ETR.
(7) Load current, PAL and Trip indicator

This displays load current and fault cause (including pre-alarm).
(8) Power supply with contact output

This outputs contact signal at fault cause (including pre-alarm) and at other alarms.
A control supply is necessary for this function.

Setting procedure

1 Prepare a small flat tipped screwdriver.

2 Insert the flat tipped screwdriver into the opening of the ETR cover. Then, lightly turn the screwdriver to the upside as shown in the left figure, and the relay cover will open.

3 There are 2 kinds of switches for setting up the required tripping characteristics and they should be used as follows.
(1) Adjustable in steps

Rotary code switch is used. Do not set the switch at points between steps. The setting value is same, when the switch is positioned at the thick line. (Set the switch with a torque of $0.02 \mathrm{~N} \cdot \mathrm{~m}$ or below.)

(2) Push-button

This is for temporary operation, and press it with force of 3 N or below.

4 When the characteristics is set up, use a device like a field tester, etc to make sure that the required characteristic has been set.

5 At sealing, seal the ETR cover by using the sealing hole at the top of the ETR cover.

Wiring diagram

- The following diagram shown accessories fully equiped.

Terminal description

D1	D2			Voltage Input terminal of UVT
DT1	DT2			Trip terminal of UVT (Remote trip)
13	14 ~	53	54	Auxiliary switch "a"
11	12 ~	51	52	Auxiliary switch "b"
U1	U2			Motor charging
413	414			Charged signal
A1	A2			Closing coil
C1	C2			Shunt trip
97	98			OCR alarm
P1	P2			Power supply for ETR
P4				FG of power supply
RS1	RS2			Alarm reset (Trip cause LED, alarm contact)
513	~ 574			Alarm contacts
Z1	Z2			For external ZCT
N1	N2			For Neutral CT
				For external display DP2
				For Interface unit
				For VT unit

Accessory Symbols

SHT	Shunt tripping device
CC	Closing coil
M	Motor(Motor charing device)
UVT	UVT coil
AX	Auxiliary switch
AL	OCR alarm
CLS	Charge limit switch
SBC	Short-circuit B-contact
CL	Cell switch

__ Internal wiring
_——External wiring (user's wiring)
-(- Control circuit connecter (drawout type)

Note;

- On the drawout type, the cables are cut to enough length allow the control circuit terminal block to be moved to the left or right by 5 mm .
- When a coil load is connected in the same control circuit as the ETR, surge absorbers are required to absorb the surge voltage.
- OCR alarm

The contact output of the OCR alarm is the one-pulse output for 30 ms . For this reason, this output needs self-holding circuit.

- CC (Closing coil)

Do not use AXb contact for a cut-off switch, because pumping prevention is not performed.

- UVT

Use the switch that can open and close DC150V, 0.5A to remote trip.
Remote trip terminal has short bar at shipment, so remove it before use.
Disconnect the wires in case of main circuit dielectric test.

Outline dimensions

Drawout type AE630-SW,AE1000-SW, AE1250-SW, AE1600-SW

Front view
Side view

*: Mounting pitch
The numerals shown in parentheses are for 3 poles.

Rear view

Horizontal termina

Vertical termina

Front terminal

Main circuit terminal dimensions

Drawout type AE2000-SWA

Front view

* : Mounting pitch

The numerals shown in
parentheses are for 3 poles.

Side view

Rear view

Main circuit terminal dimension

Outline dimensions

Drawout type AE2000-SW, AE2500-SW, AE3200-SW

Front view

: Mounting pitch
The numerals shown in
parentheses are for 3 poles.

Rear view

Side view

Main circuit terminal dimensions

Vertical terminal

Horizontal terminal

Front terminal

Dimensions

Type	(mm)
AE2000-SW AE2500-SW	95
AE3200-SW	103

Drawout type AE4000-SWA

Front view

*: Mounting pitch
The numerals shown in parentheses are for 3 poles.

Side view

Rear view

Main circuit terminal dimension

Outline dimensions

Fixed type AE630-SW, AE1000-SW, AE1250-SW, AE1600-SW

Front view
Side view

Rear view

Main circuit terminal dimension

Fixed type AE2000-SWA

Front view

* : Mounting pitch

The numerals shown in parentheses are for 3 poles

Rear view

Main circuit terminal dimension

Outline dimensions

Fixed type AE2000-SW, AE2500-SW, AE3200-SW

* : Mounting pitch

The numerals shown in parentheses are for 3 poles

Inside of the panel (thickness 1.6~3.2)

Rear view

Main circuit terminal dimension

Fixed type AE4000-SWA

Front view

* : Mounting pitch

The numerals shown in
parentheses are for 3 poles

Side view

Rear view

3P

Main circuit terminal dimension

Outline dimensions

Panel-cut, Drawout handle, Terminal adapter

Door frame panel-cut dimensions
Drawout handle dimensions

Vertial terminal adapter

$\begin{array}{cc}\text { AE630~ } & \text { AE2000~ } \\ \text { 1600-SW } & 3200-S W\end{array}$

Dimensions					(mm)
Type			C	D	T
AE630-SW~1600-SW	Fixed type	Up side	258.5	50	15
		Down side	145	50	15
	Drawout type		145	50	15
AE2000-SW,2500-SW	Fixed type	Up side	258.5	95	20
		Down side	145	95	20
	Drawout type		145	95	20
AE3200-SW	Fixed type	Up side	258.5	95	25
		Down side	145	95	25
	Drawout type		145	103	25

Neutral CT (NCT), External ZCT

Neutral CT (NCT)

External ZCT for transformer ground wire

Dimensions

	A	B	C	D	E	F	G	H
ZT15B	48	15	29	62	46	15	70	25
ZT30B	68	30	37	82	66	30	90	50
ZT40B	85	40	43	92	81	40	100	50

Dimensions

	A	B	C	D	E
ZT60B	140	60	73	150	46
ZT80B	160	80	82	169	48
ZT100B	185	100	93	190	50

Outline dimensions

ETR external units

Display onto panel board (DP2)

CC-Link, Modbus interface unit (BIF-CC, BIF-MD)

I/O unit (BIF-CON)

PROFIBUS-DP interface unit (BIF-PR)

Technical information

Pre-cautions when making connections

For the terminal connections, use M12 bolts, washers and spring washers.
In order to prevent increased contact resistance due to humidity, silver plating of the contact surface of the conductor which is connected to the terminal of the breaker, is recommended. Also clean the contact surface, and securely connect them at a suitable torque.

Standard Tightening Torque

Screw size	Tightening Torque(N•m)
M12	$40 \sim 50$
M10 (Note1)	$26 \sim 33$

Note1:In case of Horizontal-Vertical changeable terminal (HVT), use M10 bolt, washer, and spring washer.

Since fault current flowing through the conductors cause large electromagnetic forces,the conductors should be secured firmly, using the values in Table the below as a reference. Max distance between Fixing support and ACB bus bar should be less than 200 mm .

Electromagnetic force in N per 1 m conductor (in the case of three phase short circuit)

Type(A)	AE630-SW~ AE1600-SW	AE2000-SWA		$\begin{gathered} \text { AE2000-SW~ } \\ \text { AE3200-SW } \end{gathered}$	AE4000-SWA				
				Drawout type	Fixed type				
		3-Pole	4-Pole		3-Pole	4-Pole	3-Pole	4-Pole	
Conductor distance(mm) Prospective fault current $\mathrm{kA}(\mathrm{pf})$	85	115	105		130	190	170	152	145
30(0.2)	7700	5700	6300	5100	3500	3900	4300	4500	
42(0.2)	15100	11200	12200	9900	6800	7600	8500	8900	
50(0.2)	21400	15800	17300	14000	9600	10700	12000	12600	
65(0.2)	36100	26700	29300	23600	16200	18100	20200	21200	
75(0.2)	-	-	-	31500	21500	24100	26900	28200	
85(0.2)	-	-	-	40400	27600	30900	34500	36200	

When selecting conductors for connection to a Series AE breaker, ensure that they have a sufficient current capacity, refer to the below table.

Conductor Size(IEC-60947-1; Ambient $40^{\circ} \mathrm{C}$ Temp., Open air)

Rated current Max.(A)	Connecting conductors(copper bus bar)		
	Arrangement	Quantity	Conductor size(mm)
630	With long surface vertical	2	40×5
1000		2	60×5
1250		2	80×5
1600		2	100×5
2000		3	100×5
2500		4	100×5
3150(3200)*1		3	100×10
$\left(\begin{array}{c} 4000 \\ \binom{\text { AE4000-SWA }}{\text { Drawout type }} \end{array}\right.$		4	150×10
$\begin{gathered} 4000 \\ \binom{\text { AE4000-SWA }}{\text { Fixed type }} \end{gathered}$		3	150×10

[^5]
Insulation distance

When a short-circuit current is interrupted, hot gas blows out discharged from the exhaust port of the arc extinguishing chamber, so provide a clearance as shown in the following table.

Note1:On the fixed type, maintenance is possible with following clearance.

Type		AE-SW Series	
Applicable voltage		AC600V or less	AC660V, 690V
Fixed type	A	(Note 1) 0	(Note 1) 100
	B	(Note 3) 50	(Note 3) 50
	C	162	162
	D	(Note 2) 50	(Note 2) 50
Drawout type	A	0	100
	B	(Note 3) 50	(Note 3) 50
	C	240	240
	D	(Note 2) 50	(Note 2) 50

Note1:300mm or more clearance is necessary to inspect the arc-extinguishing chamber and contacts. Note2:The wiring space reguired for the control terminal block.
Note3:When using mechanical interlock, door interlock ,etc. are installed, dimension B becomes larger.

Service conditions

1. Normal service condition

Under ordinary conditions the following normal working conditions are all satisfied, the AE Series air circuit breaker may be used unless otherwise specified.

1.Ambient temperature	A range of max. $+40^{\circ} \mathrm{C}$ to min. $-5^{\circ} \mathrm{C}$ is recommended. And the average over 24 hours must not exceed $+35^{\circ} \mathrm{C}$.
2. Altitude	2,000m(6,600 feet) or less
3.Environmental conditions	The air must be clean, and the relative humidity must be 85% or less at max. temp. $+40^{\circ} \mathrm{C}$. Do not use and store in atmospheres with sulfide gas and ammonia gas etc. ($\mathrm{H}_{2} \mathrm{~S} \leq 0.01 \mathrm{ppm}, \mathrm{SO}_{2} \leq 0.1 \mathrm{ppm}, \mathrm{NH}_{3}<$ a few ppm.)
4. Installation conditions	When installing the AE Series air circuit breaker, refer to the installation instructions in the catalogue and instruction manual.
5. Storage temperature	A range of max. $+60^{\circ} \mathrm{C}$ to min. $-20^{\circ} \mathrm{C}$ is recommended to be stored. And the average over 24 hours must not exceed $+35^{\circ} \mathrm{C}$.
6. Guideline for replacement	Within approx. 15 years. Please refer to the instruction manual.

2. Special service conditions

In the case of special service condition, modified air circuit breakers are provided. Please specify when ordering. Service life may be shorter due to service conditions.
1.Special environmental conditions
2. High ambient temperature
3.High altitude

If it is used under high temperature and/or high humidity, the insulation durability and other electrical/mechanical features may deteriorate. Therefore, the breaker should be specially treated. Moisture fungus treatment with corrosion proofing is recommended. Since some parts may have problems due to corrosion caused by the use in the environments where corrosive gas occurs, the corrosion proof specifications is recommended, in such environments.

If the ambient temperature exceeds $+40^{\circ} \mathrm{C}$, the uninterrupted current rating will be reduced. Since the derating value is different depending on the applicable standard, refer to P54.

Since on the use at the $2,000 \mathrm{~m}$ or higher, the heat radiation rate is reduced, accordingly the operating voltage, continuous current capacity and breaking capacity are derated.Moreover the insulation durability is also decreased owing to the atmospheric pressure. Please inquire us for further detail.

Technical information

Internal resistance, reactance and power consumption(per pole)

Type	Connection	Internal resistance $(\mathrm{m} \Omega)$	Reactance $(\mathrm{m} \Omega)$	Power consumption (W)
	Fixed type	0.028	0.059	11
	Drawout type	0.042	0.089	17
AE1000-SW	Fixed type	0.026	0.060	26
	Drawout type	0.040	0.091	40
AE1250-SW	Fixed type	0.024	0.060	38
	Drawout type	0.038	0.091	60
AE1600-SW	Fixed type	0.016	0.063	41
	Drawout type	0.030	0.095	77
AE2000-SWA	Fixed type	0.016	0.063	64
	Drawout type	0.032	0.095	128
AE2000-SW	Fixed type	0.010	0.047	40
	Drawout type	0.020	0.071	80
AE2500-SW	Fixed type	0.008	0.047	50
	Drawout type	0.018	0.071	113
AE3200-SW	Fixed type	0.007	0.048	72
	Drawout type	0.014	0.072	143
AE4000-SWA	Fixed type	0.009	0.048	144
	Drawout type	0.015	0.072	240

The above values are applicable for one pole. (New breaker)

Deratings by ambient temperature

Standard	IEC60947-2, BS, JIS C $8201-2$ (Standard:40				
Ambient Temperature	$40^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$
AE630-SW	630	630	630	630	630
AE1000-SW	1000	1000	1000	1000	1000
AE1250-SW	1250	1250	1250	1250	1200
AE1600-SW	1600	1600	1600	1550	1500
AE2000-SWA	2000	2000	1900	1800	1700
AE2000-SW	2000	2000	2000	2000	2000
AE2500-SW	2500	2500	2500	2450	2350
AE3200-SW	3200	3200	3200	3000	2900
AE4000-SWA	4000	4000	4000	3800	3600

With Extension module,Display,Network (A)

Standard	IEC60947-2, BS, JIS C 8201-2 (Standard: $40^{\circ} \mathrm{C}$)		
Ambient Temperature	$40^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$
AE630-SW	630	630	630
AE1000-SW	1000	1000	1000
AE1250-SW	1250	1250	1250
AE1600-SW	1600	1600	1440
AE2000-SWA	2000	1900	1700
AE2000-SW	2000	2000	2000
AE2500-SW	2500	2500	2500
AE3200-SW	3200	3200	2880
AE4000-SWA	4000	3800	3600

[^6]
Technical information

Discrimination table

AE-SW Series air circuit breakers provide easy selective co-ordination with branch circuit breakers. For selective co-crdinations, refer to the following table.

AC230V sym kA

Branch			AE-SW								
			AE630-SW	AE1000-SW	AE1250-SW	AE1600-SW	AE2000-SWA	AE2000-SW	AE2500-SW	AE3200-SW	AE4000-SWA
			65	65	65	65	65	85	85	85	85
$\begin{gathered} \mathrm{NF} \\ \mathrm{I} \end{gathered}$	$\begin{aligned} & \text { NF32-SW } \\ & \text { MB30-SW } \\ & \text { MB50-CW } \end{aligned}$	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5
	NV32-SW	10	9(10)	10	10	10	10	10	10	10	10
	$\begin{aligned} & \text { NF63-SW } \\ & \text { MB50-SW } \\ & \text { NV63-SW } \\ & \hline \end{aligned}$	15	9(10)	10	10	10	10	10	10	10	10
	$\begin{aligned} & \text { NF63-HW } \\ & \text { NV63-HW } \end{aligned}$	25	9(25)	25	25	25	25	25	25	25	25
	$\begin{aligned} & \text { NF125-SW } \\ & \text { MB100-SW } \\ & \text { NV125-SW } \\ & \text { NV100-SEP } \\ & \hline \end{aligned}$	50	9(50)	45(50)	50	50	50	50	50	50	50
	$\begin{aligned} & \text { NF125-HW } \\ & \text { NV125-HW } \\ & \hline \end{aligned}$	100	9(65)	50(65)	65	65	65	85	85	85	85
H	$\begin{aligned} & \text { NF250-SW } \\ & \text { MB225-SW } \\ & \text { NV250-SW } \\ & \text { NV250-SEW } \\ & \hline \end{aligned}$	50	9(50)	20(50)	22(50)	42(50)	42(50)	50	50	50	50
$\begin{gathered} \text { MB } \\ \cdot \\ \text { NV } \\ \text { I } \\ \text { S } \\ \cdot \\ \text { H } \end{gathered}$	$\begin{aligned} & \text { NF250-HW } \\ & \text { NV250-HW } \\ & \hline \end{aligned}$	100	9(65)	25(65)	40(65)	65	65	85	85	85	85
	$\begin{aligned} & \text { NF400-SP } \\ & \text { NV400-SP } \end{aligned}$	85	-	-	20(65)	27(65)	27(65)	42(65)	70	85	85
	$\begin{aligned} & \text { NF400-SEP } \\ & \text { NV400-SEP } \\ & \hline \end{aligned}$	85	9(65)	15(65)	20(65)	27(65)	27(65)	42(65)	70	85	85
	$\begin{aligned} & \text { NF400-HEP } \\ & \text { NV400-HEP } \end{aligned}$	100	9(65)	15(65)	20(65)	27(65)	27(65)	42(65)	70	85	85
	$\begin{aligned} & \text { NF400-REP } \\ & \text { NV400-REP } \end{aligned}$	125	9(65)	15(65)	20(65)	27(65)	27(65)	42(65)	70	85	85
	$\begin{aligned} & \text { NF630-SP } \\ & \text { NV630-SP } \\ & \hline \end{aligned}$	85	-	-	-	24(65)	24(65)	30(65)	40(65)	60(65)	60(65)
	$\begin{aligned} & \text { NF630-SEP } \\ & \text { NV630-SEP } \end{aligned}$	85	-	15(65)	18(65)	24(65)	24(65)	30(65)	40(65)	60(65)	60(65)
	$\begin{aligned} & \text { NF630-HEP } \\ & \text { NV630-HEP } \end{aligned}$	100	-	15(65)	18(65)	24(65)	24(65)	30(65)	40(65)	60(65)	60(65)
	NF630-REP	125	-	15(65)	18(65)	24(65)	24(65)	30(65)	40(65)	60(65)	60(65)
	$\begin{aligned} & \text { NF800-SEP } \\ & \text { NV800-SEP } \end{aligned}$	85	-	-	18(65)	24(65)	24(65)	30(65)	40(65)	60(65)	60(65)
	$\begin{aligned} & \text { NF800-HEP } \\ & \text { NV800-HEP } \end{aligned}$	100	-	-	18(65)	24(65)	24(65)	30(65)	40(65)	60(65)	60(65)
	NF800-REP	125	-	-	18(65)	24(65)	24(65)	30(65)	40(65)	60(65)	60(65)
	$\begin{aligned} & \text { NF63-CW } \\ & \text { NV63-CW } \\ & \hline \end{aligned}$	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5
	$\begin{aligned} & \text { NF125-CW } \\ & \text { NV125-CW } \end{aligned}$	30	9(30)	15(30)	18(30)	24(30)	24(30)	30	30	30	30
	$\begin{aligned} & \text { NF250-CW } \\ & \text { NV250-CW } \end{aligned}$	35	9(35)	15(35)	18(35)	24(35)	24(35)	35	35	35	35
	$\begin{aligned} & \text { NF400-CP } \\ & \text { NV400-CP } \\ & \hline \end{aligned}$	50	-	15(50)	18(50)	24(50)	24(50)	30(50)	37(50)	48(50)	48(50)
	$\begin{aligned} & \text { NF630-CP } \\ & \text { NV630-CP } \\ & \hline \end{aligned}$	50	-	-	-	24(50)	24(50)	30(50)	37(50)	48(50)	48(50)
	NF800-CEP	50	-	-	-	24(50)	24(50)	30(50)	37(50)	48(50)	48(50)
$\left.\begin{gathered} \mathrm{NF} \\ 1 \\ \mathrm{U} \end{gathered} \right\rvert\,$	NF125-RGW	125	65	65	65	65	65	85	85	85	85
	NF125-UGW	200	65	65	65	65	65	85	85	85	85
	NF250-RGW	125	9(65)	65	65	65	65	85	85	85	85
	NF250-UGW	200	9(65)	65	65	65	65	85	85	85	85
	NF400-UEP	200	9(65)	15(65)	18(65)	29(65)	29(65)	48(65)	85	85	85
	NF630-UEP	200	-	15(65)	18(65)	24(65)	24(65)	30(65)	37(65)	68	68
	NF800-UEP	200	-	-	18(65)	24(65)	24(65)	30(65)	37(65)	68	68
$\begin{gathered} \hline \mathrm{NF} \\ \mathrm{C} \\ \mathrm{C} \\ \mathrm{NV} \\ \mathrm{~N} \\ \mathrm{C} \\ \hline \end{gathered}$	NF30-KC NF50-KC NF100-KC NV30-KC NV50-KC NV100-KC	5	5	5	5	5	5	5	5	5	5

[^7]AC440V sym kA

Branch			AE-SW								
			AE630-SW	AE1000-SW	AE1250-SW	AE1600-SW	AE2000-SWA	AE2000-SW	AE2500-SW	AE3200-SW	AE4000-SWA
			65	65	65	65	65	85	85	85	85
	$\begin{aligned} & \text { NF32-SW } \\ & \text { MB30-SW } \\ & \text { MB50-CW } \end{aligned}$	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
	NV32-SW	5	5	5	5	5	5	5	5	5	5
	$\begin{aligned} & \text { NF63-SW } \\ & \text { MB50-SW } \\ & \text { NV63-SW } \\ & \hline \end{aligned}$	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5
	$\begin{aligned} & \text { NF63-HW } \\ & \text { NV63-HW } \\ & \hline \end{aligned}$	10	9(10)	10	10	10	10	10	10	10	10
	$\begin{aligned} & \text { NF125-SW } \\ & \text { MB100-SW } \\ & \text { NV125-SW } \\ & \text { NV100-SEP } \end{aligned}$	25	7(25)	20(25)	25	25	25	25	25	25	25
	$\begin{aligned} & \text { NF125-HW } \\ & \text { NV125-HW } \end{aligned}$	50	9(50)	30(50)	50	50	50	50	50	50	50
	$\begin{aligned} & \text { NF250-SW } \\ & \text { MB225-SW } \\ & \text { NV250-SW } \\ & \text { NV250-SEW } \end{aligned}$	25	7(25)	14(25)	19(25)	25	25	25	25	25	25
	$\begin{aligned} & \text { NF250-HW } \\ & \text { NV250-HW } \end{aligned}$	50	7(50)	15(50)	25(50)	42(50)	42(50)	50	50	50	50
	$\begin{aligned} & \text { NF400-SP } \\ & \text { NV400-SP } \end{aligned}$	50	-	-	18(50)	24(50)	24(50)	33(50)	45(50)	50	50
	$\begin{aligned} & \text { NF400-SEP } \\ & \text { NV400-SEP } \end{aligned}$	50	9(50)	15(50)	18(50)	24(50)	24(50)	33(50)	45(50)	50	50
	$\begin{aligned} & \text { NF400-HEP } \\ & \text { NV400-HEP } \end{aligned}$	65	9(65)	15(65)	18(65)	24(65)	24(65)	33(65)	45(65)	65	65
	$\begin{aligned} & \text { NF400-REP } \\ & \text { NV400-REP } \end{aligned}$	125	9(65)	15(65)	18(65)	24(65)	24(65)	33(65)	45(65)	80	80
	$\begin{aligned} & \text { NF630-SP } \\ & \text { NV630-SP } \\ & \hline \end{aligned}$	50	-	-	-	24(50)	24(50)	33(50)	45(50)	50	50
	$\begin{aligned} & \text { NF630-SEP } \\ & \text { NV630-SEP } \\ & \hline \end{aligned}$	50	-	15(50)	18(50)	24(50)	24(50)	30(50)	40(50)	50	50
	$\begin{aligned} & \text { NF630-HEP } \\ & \text { NV630-HEP } \end{aligned}$	65	-	15(65)	18(65)	24(65)	24(65)	30(65)	40(65)	60(65)	60(65)
	NF630-REP	125	-	15(65)	18(65)	24(65)	24(65)	30(65)	40(65)	60(65)	60(65)
	$\begin{aligned} & \text { NF800-SEP } \\ & \text { NV800-SEP } \end{aligned}$	50	-	-	18(50)	24(50)	24(50)	30(50)	40(50)	60(50)	60(50)
	$\begin{aligned} & \text { NF800-HEP } \\ & \text { NV800-HEP } \end{aligned}$	65	-	-	18(65)	24(65)	24(65)	30(65)	40(65)	60(65)	60(65)
	NF800-REP	125	-	-	18(65)	24(65)	24(65)	30(65)	40(65)	60(65)	60(65)
$\left.\begin{gathered} \mathrm{NF} \\ 1 \\ \mathrm{C} \\ \dot{\mathrm{C}} \\ \mathrm{NV} \\ 1 \\ \mathrm{C} \end{gathered} \right\rvert\,$	$\begin{aligned} & \text { NF63-CW } \\ & \text { NV63-CW } \end{aligned}$	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
	$\begin{aligned} & \text { NF125-CW } \\ & \text { NV125-CW } \end{aligned}$	10	9(10)	10	10	10	10	10	10	10	10
	$\begin{aligned} & \text { NF250-CW } \\ & \text { NV250-CW } \\ & \hline \end{aligned}$	15	9(15)	15	15	15	15	15	15	15	15
	$\begin{aligned} & \text { NF400-CP } \\ & \text { NV400-CP } \end{aligned}$	25	-	15(25)	18(25)	24(25)	24(25)	25	25	25	25
	$\begin{aligned} & \text { NF630-CP } \\ & \text { NV630-CP } \end{aligned}$	35	-	-	-	24(35)	24(35)	30(35)	35	35	35
	NF800-CEP	35	-	-	-	24(35)	24(35)	30(35)	35	35	35
$\begin{gathered} \mathrm{NF} \\ 1 \\ \mathrm{U} \end{gathered}$	NF125-RGW	125	35(65)	65	65	65	65	85	85	85	85
	NF125-UGW	200	50(65)	65	65	65	65	85	85	85	85
	NF250-RGW	125	9(65)	50(65)	65	65	65	85	85	85	85
	NF250-UGW	200	9(65)	65	65	65	65	85	85	85	85
	NF400-UEP	200	9(65)	15(65)	18(65)	29(65)	29(65)	48(65)	85	85	85
	NF630-UEP	200	-	15(65)	18(65)	24(65)	24(65)	30(65)	37(65)	68	68
	NF800-UEP	200	-	-	18(65)	24(65)	24(65)	30(65)	37(65)	68	68

The values in the table represent the max.rated current for both Series AE-SW air circuit breakers and branch breakers, and the selective co-ordination applies when the AE-SW series air circuit
breakers instantaneous pick up is set to maximum.
The numerals shown in parentheses are for AE-SW with MCR.(When set MCR).

Ordering information

Ordering information for Mitsubishi AE-SW series air circuit breaker(General use......WS Type,Special use......WB Type)

Mechanical accessories P15-16	\checkmark Push button cover(BC-L)
	\square Counter(CNT)
	\square Cylinder lock(CYL)
	\square Door interlock(DI) Note11
	\square IP20-Terminal cover(IP-TC)
	\checkmark Door frame(DF)
	\square Dust cover(DUC)
	V Interphase barrier(BA) ${ }^{\text {Note12 }} \square \square$ for 2units(M12)
	\square Mechanical interlock(MI) $\quad \square$ for 3units(M13) Note11

Special environments	\squareMoisture-fungus treatment	\square Corrosion resist

| P16 $_{16}$ (V Condenser trip device |
| :---: | :---: |
| (COT) |\quad| V AC100-110V |
| :--- |

Note 1: In case of AE630-SW and AE2000-SW Low rating type, please specify CT rating. Refer to Page 9 and Page 20.
Note2: There is a case to be derated by ambient temperature. Refer to Page 54
Note 3: As for the terminal for AE2000-SWA and AE4000-SWA, Vertical terminal type only is available. (FIX-VT or DR-VT)
Note 4: DR-HVT is available for AE630-SW~AE1600-SW. It is provided a special "Cradle" and "Terminals", which have adifferent dimensions from the other connection. Refer to Page 11 and Page 39.
Note5: This setting is available for change by customer later.A preliminary setting of CL at factory shipment is as follows.
CL1:1C CL2:1C1D CL3:1C1T1D CL4:2C1T1D
Note6: Not available for AE630-SW with CT rating : 250A or 315A or 500A.
Note7: Not available for WB1 or WB2 Main setting module.
N5 optional setting module is used for 3phase 4wires system. (4Pole breaker or 3pole breaker with Neutral CT)
Note8: Neutral CT is required for Ground fault or Neutral pole protection, when 3 Pole breaker is used for 3 phase 4 wires system.
Note9: In case of Earth leakage protection, it is required External ZCT.
Note10: DC24V and DC48V are not available for AE4000-SWA 4P
Note11: The combined installation of DI and MI3 is not available.
Note12: Some module types are not provided BA. Refer to Page15.

Remark

Order Issuer			

Ordering information for Mitsubishi AE-SW series air circuit breaker(General use......WS Type,Special use......WB Type)

Electronic trip relay(ETR)

WS1: General use for AE630-1600-SW / AE2000-3200-SW
WS2: General use for AE2000-SWA / AE4000-SWA
WB1: INST/MCR only
WB2: INST/MCR only
for AE2000-SWA / AE4000-SWA

Optional setting module G1: Ground fault protection N5: Neutral pole 50% protection E1: Earth leakage protection AP: 2nd Additional Pre-alarm NA: Without optional setting

Power supply P1:AC•DC100-240V P2: DC24-60V

P3: AC100-240V / DC100-125V with output contact P4: DC24-60V with output contact P5: DC100-240V P5: DC100-240V
with output contact (SSR)

Additional function P32

\square BIF-CL
${ }_{\text {P16 }} \square$ Condenser trip device $-\square$ AC100-110V
(COT)

\square BARE(ETR not required)

Special environments	\squareMoisture-fungus treatment	\square Corrosion resist

[^8]Remark

Note 1: In case of AE630-SW and AE2000-SW Low rating type, please specify CT rating Refer to Page 9 and Page 20
Note2: There is a case to be derated by ambient temperature. Refer to Page 54
Note 3: As for the terminal for AE2000-SWA and AE4000-SWA, Vertical terminal type only is available. (FIX-VT or DR-VT)
Note 4: DR-HVT is available for AE630-SW~AE1600-SW. It is provided a special "Cradle" and "Terminals", which have adifferent dimensions from the other connection. Refer to Page 11 and Page 39.
Note5: This setting is available for change by customer later.A preliminary setting of CL at factory shipment is as follows.
CL1:1C CL2:1C1D CL3:1C1T1D CL4:2C1T1D
Note6: Not available for AE630-SW with CT rating : 250A or 315A or 500A.
Note7: Not available for WB1 or WB2 Main setting module.
N5 optional setting module is used for 3phase 4wires system.(4Pole breaker or 3pole breaker with Neutral CT)
Note 8: Neutral CT is required for Ground fault or Neutral pole protection,when 3 Pole breaker is used for 3 phase 4 wires system.
Note9: In case of Earth leakage protection, it is required External ZCT
Note10: DC24V and DC48V are not available for AE4000-SWA 4P.
Note11: The combined installation of DI and M13 is not available.
Note12: Some module types are not provided BA. Refer to Page15.

Order Issuer			

Ordering information for Mitsubishi AE-SW series air circuit breaker(Generator protection use......WM Type)

Mechanical accessories	\square Push button cover(BC-L)
P15-16	\square Counter(CNT)
	\square Cylinder lock(CYL)
	\square Door interlock(DI) Note11
	\square IP20-Terminal cover(IP-TC)
	\square Door frame(DF)
	\square Dust cover(DUC)
	\square Interphase barrier(BA) Note12
	\square for 2units(MI2)
	\square Mechanical interlock(MI)
\square for 3units(MI3) Note11	

P16 \square	Condenser trip device (COT)
	\square AC100-110V
	\square AC200-220V

Note 1: In case of AE630-SW and AE2000-SW Low rating type, please specify CT rating. Refer to Page 9 and Page 20.
Note2: There is a case to be derated by ambient temperature. Refer to Page 54.
Note 3: As for the terminal for AE2000-SWA and AE4000-SWA, Vertical terminal type only is available. (FIX-VT or DR-VT)
Note 4: DR-HVT is available for AE630-SW~AE1600-SW. It is provided a special "Cradle" and "Terminals", which have adifferent dimensions from the other connection. Refer to Page 11 and Page 39.
Note5: This setting is available for change by customer later.A preliminary setting of CL at factory shipment is as follows.
CL1:1C CL2:1C1D CL3:1C1T1D CL4:2C1T1D
Note6: Not available for AE630-SW with CT rating : 250A or 315 A or 500 A .
Note 7: N5 optional setting module is used for 3 phase 4 wires system.(4 Pole breaker or 3 pole breaker with Neutral CT)
Note8: Neutral CT is required for Ground fault or Neutral pole protection,when 3 Pole breaker is used for 3 phase 4 wires system.
Note9: In case of Earth leakage protection, it is required External ZCT.
Note10: DC24V and DC48V are not available for AE4000-SWA 4P.
Note11: The combined installation of DI and MI 3 is not available.
Note12: Some module types are not provided BA. Refer to Page15.

Memo

Service network

Country / Region	Company	Address	Telephone
Australia	Mitsubishi Electric Australia Pty. Ltd	348 Victoria Road, Rydalmere, N.S.W. 2116, Australia	+61-2-9684-7586
Belgium	Emac S.A.	Industrialaan 1, B-1702 Groot-Bijgaarden, Belgium.	+32-(0)2-4810211
Chile	RHONA S.A.	Vte. Agua Santa 4211 Casilla 30-D (P.O. Box) Viña Del Mar. Chile	+56-32-320652
	Mitsubishi Electric Automation (Shanghai) Limited	(Shanghai) 3F, Block 5, 103 Cao Bao Road, Shanghai, China	+86-(0)21-6475-3228
China	SHANGHAI SETSUYO TRADING CO.,LTD.	Shanghai Everbright Convention \& Exhibition Center Room2306. Block D. 80, Cao bao Rd., Xuhui District Shanghai, P. R. Chaina	+86-(0)21-6432-6698
Colombia	Proelectrico Representaciones S.A.	Cra 53 No 29C-73 U.I.C.- Medellin. COLOMBIA.	+57-4-235-00-28
Denmark	Louis Poulsen CO. A/S	Geminivej 32, DK-2670 Greve, Denmark.	+45-(0)43-95-95-95
Egypt	CAIRO ELECTRICAL GROUP	9 Rostoum Street Garden City, APT. 5, P.O. BOX: 165-11516, Cairo-Egypt.	+20-2-7961337
Germany	Mitsubishi Electric Europe B.V. German Branch.	Gothaer Strasse 8, 40880 Ratingen, Germany.	+49-(0)2102-4860
Greece	Drepanias Antonios S.A.	52, Arkadias STR.GR 121 32. Peristeri Athens Greece.	+30-1-57-81-599-699
Hong Kong	Mitsubishi Electric Automation (Hong Kong) Limited	10/F Manulife Tower 169 Electric Road North Point. Hong Kong.	+852-28878870
Indonesia	P.T.SAHABAT INDONESIA.	JL Muara Karang Selatan Blok A/Utara No. 1 kav. NO. 11 P.O. Box 5045/Jakarta/11050. Jakarta Indonesia.	+62-(0)21-6621780
Ireland	Mitsubishi Electric Europe B.V. Irish Branch.	Westgate Business Park, Ballymount, Dublin 24, Ireland.	+353-(0)1-4505007
Italy	Mitsubishi Electric Europe B.V. Italy	C.D.Colleoni-P.Perseo Ing.2, Via Paracelso 12 1-20041 Agrate Brianza (M1)	+390-39-60-531
Israel	GINO INDUSTRIES LTD.	26, Ophir street, IL-32235 Haifa, Israel	+972-(0)4-867 0656
Korea	MITSUBISHI ELECTRIC AUTOMATION KOREA CO., LTD.	2 FI. Dong Seo Game Channel Bldg., 1F 660-11 Deungchon-Dong, Kanguseo-Ku, Seoul, 157-030 Korea	+82-2-3668-6567
Laos	SOCIETE LAO IMPORT-EXPORT	43-47 Lane Xang Road P.O. BOX 2789 VT Vientiane, Laos	+856-21-215043, 21-215110
Lebanon	COMPTOIR D'ELECTRICITE GENERALE INTERNATIONAL	Cebaco Center-Block A. Autostrade Dora, P.O. BOX: 90-1314 Beirut-Lebanon.	+961-1-240430
Malaysia	mittric Sdn Bhd	12A, Jalan Pemberita U1/49, Temasya Industrial Park, Glenmarie, 40150 Shah Alam, Selangor, Malaysia	+603-5569-3748
Myanmer	PEACE MYANMAR ELECTRIC CO., LTD.	NO. 137/139 Botataung Pagoda Road, Botataung Town Ship 11161, Yangon, Myanmar.	+95-(0)1-202589, 202449, 202590
Nepal	Watt \& Volt House Co., Ltd.	KHA 2-65, Volt House Dilli Bazar Post Box: 2108, kathmandu, Nepal	+977-1-411330
New Zealand	Melco Sales (N.Z.) Ltd.	1 Parliament Street Lower Hutt. New Zealand.	+64-4-569-7350
Norway	SCANELEC	Leirvikasen 43B, N5020 Bergen, Norway.	+47-55-506000
Pakistan	Prince Electric Co.	16 Brandreth Road Lahore 54000. Pakistan.	+92-(0)42-7654342
Philippines	EDISON ELECTRIC INTEGRATED, INC.	24th FI. Galleria Corporate Center Edsa Cr, Ortigas Ave. Quezon City, Metro Manila. Philippines.	+63-(0)2-643-8691
Poland	MPL Technology Sp zo.o.	ul. Sliczna 36 31-444 Krakow, Poland.	+48-(0) 12-632-28-85
Saudi Arabia	CENTER OF ELECTRICAL GOODS	Al-Nabhaniya Street-4Th Crossing, Al-Hassa Road, P.O. BOX: 15955, Riyadh 11454, Saudi Arabia.	+966-1-4770149
Singapore	MITSUBISHI ELECTRIC ASIA PTE LTD.	307 Alexandra Road \#05-01/02 Mitsubishi Electric Building Singapore 159943	+65-473-2308
Slovenia	INEA d.o.o.	Ljubljanska 80, SI-61230 Domzale, Slovenia.	+386-(0)17-21 8000
South Africa	Circuit Breaker Industries LTD.	Private Bag 2016. Isando 1600, Johannesburg, South Africa	+27-11-928-2000
Spain	Mitsubishi Electric Europe B.V. Spanish Branch.	Caretera De Rubi 76-80, 08190 - Sant Cugat Del Valles (Barcelona) Spain	+34-93-595-3131
Sweden	Euro Energy Components AB	Box 10348 S-434 24 Kungsbcka, Sweden.	+46-(0)300-69 0040
Switzerland	Trielec A G	Mühlentalstrasse 136, 8201 Schaffhausen, Switzerland	+41-(0)52-6258425
Taiwan	Setsuyo Enterprise Co., Ltd.	6F, NO. 105 Wu-Kung 3rd rd., Wu-Ku Hsiang, Taipei Hsien Taiwan	+886-(0)2-2298-8889
Thailand	UNITED TRADING \& IMPORT CO. LTD.	77/12 Bumrungmuang Road, Klong Mahanak, Pomprab Bangkok 10100.	+66-223-4220-3
The Netherlands	Imtech Marine \& Industry	Postbox 5054, NL-3008 AB-Rotterdam, Netherlands.	+31-(0)10-487 1911
Turkey	GTS	Fahri Gizden Sokak, Hacaloglu Apt. No.22/6 TR-80280 Gayrettepe/Istanbul, Turkey.	+90-(0)212-2674011
U.K.	Mitsubishi Electric Europe B.V. UK-Branch.	Travellers Lane, Hattield, Herts, AL10 8xB, U.K.	+44-(0)1707-276-100
Uruguay	Fierro Vignoli S.A.	P.O. box 20022/Suc Upae, Montevideo. Uruguay.	+598-2-92-08-08
Venezuela	ADESCO C.A.	Lle 8, Calpon Elinsu, La Urbina-EDO, Miranda P.O. BOX 78034 Caracas 1074A., Venezuela	+58-2-241-7634
Vietnam	SA GIANG TECHNO CO., LTD.	47-49 Hoang Sa St., Da Kao Ward, D.1, HCMC	+84-8-910 4763/4758/4759

[^0]: AE 630-SW 3 kinds of products with low rating types is available.

 - 250-275-300-325-350-375-400-425-450-475-500(CT 500A)
 - 157.5-173.3-189-204.8-220.5-236.3-252-267.8-283.5-299.3-315(СТ 315A)
 - 125-137.5-150-162.5-175-187.5-200-212.5-225-237.5-250(CT 250A)
 (Note 6) This value means the instantaneous breaking time at shortcircuit interruption. As for accessories (SHT, UVT), refer to page 14 .

[^1]: Upper figure and table denote that are include optional MCR function.

[^2]: Upper figure and table denote that are include optional MCR function.

[^3]: As for outline dimensional drawing, refer to page 48.

[^4]: ote 1) 2 units of display modules can be attached

 Note 3) Display is available only when TAL sensor is attached.
 Note 4) Except the accuracy of ZCT

[^5]: *1 The temperature rise of rated current 3200A conforms to the requirement of IEC 60947-1 for the connecting conductor size of a rated current 3150A. In case of more than 3200A, conductor sizes are not defined in IEC 60947-1.

[^6]: The above table shows the maximum rated current (at new product) of drawout type breaker by vertical connection methods and the ambient temperature of breaker and bus bar.
 Connection bus bar is by IEC60947-1. AE3200-SW and AE4000-SWA are by manufacturer recommended size of P51.
 Breaker and bus bar show the maximum current value in open air.
 As for ambient temperature exceeding $60^{\circ} \mathrm{C}$, please inquire us.
 In case of with extension module (EX1), display (DP1), and network attached, deratings are the values shown in this table.

[^7]: - The values in the table represent the max.rated current for both Series AE-SW air circuit breakers and branch breakers,and the selective co-ordination applies when the AE-SW series air circuit
 eakers instantaneous pick up is set to maximum.
 - The numerals shown in parentheses are for AE-SW with MCR.(When set MCR)

[^8]: environments \quad treatment

